Enhanced Conversion Efficiency of III–V Triple-junction Solar Cells with Graphene Quantum Dots

نویسندگان

  • Tzu-Neng Lin
  • Svette Reina Merden S. Santiago
  • Jie-An Zheng
  • Yu-Chiang Chao
  • Chi-Tsu Yuan
  • Ji-Lin Shen
  • Chih-Hung Wu
  • Cheng- An J. Lin
  • Wei-Ren Liu
  • Ming-Chiang Cheng
  • Wu-Ching Chou
چکیده

Graphene has been used to synthesize graphene quantum dots (GQDs) via pulsed laser ablation. By depositing the synthesized GQDs on the surface of InGaP/InGaAs/Ge triple-junction solar cells, the short-circuit current, fill factor, and conversion efficiency were enhanced remarkably. As the GQD concentration is increased, the conversion efficiency in the solar cell increases accordingly. A conversion efficiency of 33.2% for InGaP/InGaAs/Ge triple-junction solar cells has been achieved at the GQD concentration of 1.2 mg/ml, corresponding to a 35% enhancement compared to the cell without GQDs. On the basis of time-resolved photoluminescence, external quantum efficiency, and work-function measurements, we suggest that the efficiency enhancement in the InGaP/InGaAs/Ge triple-junction solar cells is primarily caused by the carrier injection from GQDs to the InGaP top subcell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Characterization of Graphene-ZnO Nanocomposite and its Application in Photovoltaic Cells

In this paper, we present a simple method for preparation of graphene-ZnO nanocomposites (G-ZnO). The method is based on thermal treatment of the graphene oxide (GO)/ZnO paste which reduces the graphene oxide into the graphene and leads to the formation of the G-ZnO nanocomposite. The structure, morphology and optical properties of synthesized nanocomposites are characterized with XRD, FESEM, F...

متن کامل

Hybrid zinc oxide/graphene electrodes for depleted heterojunction colloidal quantum-dot solar cells.

Recently, hybrid nanocomposites consisting of graphene/nanomaterial heterostructures have emerged as promising candidates for the fabrication of optoelectronic devices. In this work, we have employed a facile and in situ solution-based process to prepare zinc oxide/graphene quantum dots (ZnO/G QDs) in a hybrid structure. The prepared hybrid dots are composed of a ZnO core, with an average size ...

متن کامل

Further Improvement in Efficiency of ZnO Nanorod Based Solar Cells Using ZnS Quantum Dots as Light Harvester and Blocking Layer Material

Zinc oxide nanorod arrays (ZnO NRs) were grown on the ZnO seed layers via an aqueous solution using hydrothermal method and their photovoltaic properties were investigated. It was found that the growth period of 20 minutes is the optimum condition for ZnO nanorods growth, the cell containing these nanorods was considered as a reference cell. In order to further increase the cell performance, Zn...

متن کامل

SILAR Sensitization as an Effective Method for Making Efficient Quantum Dot Sensitized Solar Cells

CdSe quantum dots were in situ deposited on various structures of TiO2 photoanode by successive ionic layer adsorption and reaction (SILAR). Various sensitized TiO2 structures were integrated as a photoanode in order to make quantum dot sensitized solar cells. High power conversion efficiency was obtained; 2.89 % (Voc=524 mV, Jsc=9.78 mA/cm2, FF=0.56) for the cells that sensitized by SILAR meth...

متن کامل

طراحی و شبیه‌سازی سلول خورشیدی سه‌پیوندی بر مبنای چاه کوانتومی

In this paper, the purpose is to improve the efficiency of triple-junction solar cell by introducing quantum well into GaAs junction. Firstly, InGaP/GaAs/InGaAs triple-junctions solar cell has been simulated. Then, a multiple stepped quantum wells (MSQWs), in which InGaAs well is sandwiched by InGaAsP as stepped layer, and the barrier is GaAs, has been introduced into intrinsic region of single...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016